Isometric, Symmetric and Isosymmetric Commuting d-Tuples of Banach Space Operators
نویسندگان
چکیده
Generalising the definition to commuting $d$-tuples of operators, a number authors have considered structural properties $m$-isometric, $n$-symmetric and $(m,n)$-isosymmetric in recent past. This note is an attempt take mystique out this extension show how large these follow from more familiar arguments used prove single operator version properties.
منابع مشابه
m-Isometric Commuting Tuples of Operators on a Hilbert Space
We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a the...
متن کاملIsometric Dilations of Non-commuting Finite Rank N-tuples
A contractive n-tuple A = (A1, . . . , An) has a minimal joint isometric dilation S = (S1, . . . , Sn) where the Si’s are isometries with pairwise orthogonal ranges. This determines a representation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed nonself-adjoint algebra S generated by S is completely described in terms of the properties of A. This provid...
متن کاملPartially Isometric Dilations of Noncommuting N-tuples of Operators
Given a row contraction of operators on Hilbert space and a family of projections on the space which stabilize the operators, we show there is a unique minimal joint dilation to a row contraction of partial isometries which satisfy natural relations. For a fixed row contraction the set of all dilations forms a partially ordered set with a largest and smallest element. A key technical device in ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملNonwandering operators in Banach space
We introduce nonwandering operators in infinite-dimensional separable Banach space. They are new linear chaotic operators and are relative to hypercylic operators, but different from them. Firstly, we show some examples for nonwandering operators in some typical infinite-dimensional Banach spaces, including Banach sequence space and physical background space. Then we present some properties of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2023
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-023-01855-0